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Resonant conductance of two-dimensional electron 
systems in a long-wave approximation 

A Matulis and K Patiejiinas 
Semiconductor Physics Institute. Lithuanian Academy of Sciences, PoLelos 52. Vilnius, 
Lithuania. USSR 
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Abstract. A simple method for the description of resonant phenomena in the ballistic 
quantum transport of the non-interacting two-dimensional electron gas has been developed. 
The method is based on the analogies to the theory of diffraction by small holes and is of use 
when the quantum electronic device consists of some parts separated by apertures the 
dimensions of which are small compared with the electron wavelength. The conductance of 
thenarrowringwith themagnetic Ruxthrough the hole hasbeencalculatedand themagnetic 
field influence on the conductance resonant structure has been considered, 

1. Introduction 

Recently Wharam et a/ [I] and van Wees et a1 [2] discovered the phenomenon of 
conductance quantization in the narrow channel of the two-dimensional ( 2 ~ )  electron 
gas of a GaAs-AI,Ga,.,As heterojunction. Since then a great number of various 
phenomena related to the interference of electronic waves in two 2D channels, resonant 
tunnelling and the magnetic field influence on the ballistic quantum transport have been 
revealed [3-51. For a theoretical treatment of the ballistic transport in the above- 
mentioned ?D electronic systems the linear conductance formula G = (e'/h) Tr(t t+) ,  
where t is the transmission amplitude matrix most commonly used. Such an approach 
can beappliedwhen we are strictlyconcerned withcurrent sourcesandvoltagemeasure- 
ments at reservoirs connected to the sample [ 6 , 7 ] .  The transmission amplitude matrix 
calculations are based mainly on the numerical solution of the appropriate Schrodinger 
equation [&IO]. Those calculations confirmed the quantization phenomena and res- 
onant conductance effects. Nevertheless, we believe the development of the analytical 
description methods to be of value. 

In this paper we present the ballistic transport description method based on the 
analogies to the theory of diffraction by small holes, developed by Bethe [Ill.  In our 
opinion the method could be effectively applied to various remnant phenomena in the 
ballistic quantum transport. 

The paper is arranged as follows. In section 2, Kirchhoff s integral technique for 
solving the ballistic conductance problem is described and a special integral equation 
for so-called aperture functions defined in the narrowest ?D device cross sections is 
derived. In section 3 the above-mentioned integral equation is simplified by means of 
the long-wave approximation when the electron wavelength is much greater than the 
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aperturedimensions. Theillustration ofthesuggested methodisgiveninsection4 where 
the resonant conductance of the ZD ring with the magnetic field is considered. The 
discussion of the results is presented in section 5 .  

2. Method of calculation 

2.1. Conductance 

Let us consider the ZD electronic device with a general layout shown in figure 1. It is 
made of a central box I1 connected to two half-planed electrodes I and 111 by apertures. 
We assume them to have a size d. Instead of using the transmission amplitude matrix we 
find it more convenient to use the conductance expression via electron wavefunctions. 
So, let us introduce the electron eigenfunction Y, which satisfies the Schrodinger 
equation 

(H - @)Yk(X, 2) = 0 (2.1) 
with the hard-wall boundary conditions and the requirement that the asymptotic behav- 
iour in the left-hand half-plane I should correspond to the incident electronic plane wave 

Y k ( x , z ) +  I- exp[ ik(xcosx+zs inx) ]  -?i (2.2) 

01 being the angle between the wavevector k and the O x  axis). The Hamilton operator 
is 

H = -b(a2/ax2 + a z / a z z ) .  (2.3) 
Now, according to [12] we write the following expression for the above-mentioned 

device conductance: 
G = J/V = (e2/nh)g (2.4) 

where Vis the voltage applied to the half-planes I and Ill and J is the current through 
the central box 11. The expression for the dimensionless conductivityg can be written as 
follows: 

(2.5) 

The first integration in equation (2.5) corresponds to the average over the electrons with 
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the Fermi energy and moving towards the central box, while the second integration gives 
the total current through the device. We find it convenient to perform this integration 
along the semicircle C"'in the right-hand half-plane. The partial derivative J/Jn has to 
be calculated in the perpendicular to the contour C"' direction. 

2.2. Kirchhoffs integral method 

According to the Green theorem, the wavefunction at any point on the left-hand half- 
plane I is 

J a 
Yi(r') = $dl[G'(rIr')-Yi(r) Jn - Yi(r)-G'(rlr')] an (2.6) 

where the integration should be performed along the contour in the left-hand half-plane 
indicated in figure 1 by a broken curve. The Green function G'(r1r') satisfies the 
following equation: 

(H - BkZ)G'(r(r') = ts(r- r ' ) .  (2.7) 

We assume the Green function to consist of diverging waves only and to satisfy the 
hard-wall boundary conditions on the interface (including aperture). Then the solution 
of equation (2.7) can be written in the following way: 

G'(r1r') = (i/4)[Hf'(kV(x - x ' ) ~  + (r - z ' ) * )  

- Hf)(kV(x - x')2 + (2 + r')"]. (2.8) 

Here Hh') is the Hankel function of kind one. 
Taking into account the Green function boundary conditions and the asymptotic 

behaviour of function (2.8) on the semicircle C' (when R - t  m), equation (2.6) can be 
rewritten as 

Yi(r ') = exp(ik,x')[exp(ik,z') - exp(-ik,~')] 

Here we have introduced the left-hand aperture function 

@L(x) = Yu:(x,O) ( -d /2  6 x =Z d/Z). (2.10) 

By means of the Green theorem, similar expressions for wavefunctionsin the central 
box I1 and on the right-hand half-plane 111 can be obtained. They are 

dl2 J 
Y f ( r ' )  = dx@L(x)-Gil(rlr')Ir-O 

' - d l 2  J Z  

dl2 a - dxQ,R(x)-G1l(rlr')lr=L 
'-dl2 Jr (2.11) 
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df2 a 
az 

Y ir’(r’) = I-, dx OR(x) - G lrl(rlr’)lz= (2.12) 

where 

@R(x) = YiII(x, t) (2.13) 

is the right-hand aperture function. In the diffraction theory, expressions analogous to 
(2.9), (2.11) and (2.12) are known as Kirchhoffs integrals. 

2.3. Equations for aperture functions 

The wavefunctions defined by equations (2.9), (2.1 1) and (2.12) naturally have to satisfy 
the boundary conditionsin theapertures. The equalityofthe above-mentionedfunctions 
in the aperturesfollowsfrom the Green functiondefinition. The equalityoftheir normal 
derivativesleads to the following integral equations: 

412 
dx KL.L(x‘(x)OL(x) + I dx K L . R ( x ’ [ x ) O R ( x )  

-dj2 

= k, exp(ik,x‘) (2.14) 

(2.15) 

the kernels of which can be represented in the form 

K L . L ( x ’ I ~ )  = -(i/2) lim{[a2/(Jz d^z‘)][G[‘(rlr’)l. .=+, + G‘(rlr’) lz .=-u]12.~)  
*-0 

(2.16) 

K R . R ( ~ ’ I x )  = -(i/2) lim{[d’/(az az‘)][G rr1(rlr’)12,=L+e + G ’ r ( r ~ r ’ ) ~ ~ , ~ L - ~ ] ~ ~ = L }  
ol- 0 

(2.17) 

K L . R ( ~ ’ I ~ )  = -(i/2)[a2/(az a z ’ ) ] G ” ( r l r ’ ) ~ , , = ~ , , = ~  (2.18) 

KR.L(x’Jx) = -(i/2)[d2/(az az’ ) ]G [ l ( r ~ r ‘ ) ~ z ~ = L , z = o .  (2.19) 

Here a small positive quantity 1y is included to avoid the Green function singularity 
exactly in the aperture. 

After the system of aperture equations (2.14) and (2.15) has been solved, the 
conductivity can be found by substituting @’for equation (2.12) and performing direct 
integration in equation (2.5). 

The main advantage of the suggested equation system (2.14) and (2.15) is the 
restriction of its definition region. Namely, instead of solving the initial Schrodinger 
equation (2.1) in the all-device plane, one has to solve the above-mentioned integral 
equations defined in the apertures only. The kernels are expressed via the Green 
functions which can be defined separately in the isolated parts of the device. A certain 
disadvantage of this method is the singularity of the kernels. That is why, for the 
numerical solution of those integral equations, special methods should be used. 
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3. Long-wave approximation 

Now let us consider a simpler case when the electron wavelength considerably exceeds 
the aperture dimension, i.e. kd 1. In this case the kernels of the integral equations can 
be expanded into the kd-power series and the equations significantly simplified and 
reduced to the algebraic equations system. The main problem in performing the above- 
mentioned long-wave approximation is the Green function singularity when x --f x ’ .  
This singularity should be singled out in a proper way. 

In the case of the left-hand half-plane Green function (2.8) a direct transformation 
leads to the following expression: 

e- lim{[az/(az 0 a ~ ‘ ) ] G ’ ( r I r ‘ ) l ~ = ~ , ~ , = - ~ }  = iKO(x - x’)R(klx - x ’ l )  (3.1) 

with the singular factor 

K&) = 0-0 Iim{(1/2zi)[1/(x - in)* + l / ( x  + in)’]) ( 3 4  

and the regular factor 

R(x) = (k/2)H\’)(xj. (3.3) 

R(xj = 1 + !inx2 (3.4) 

Below we restrict ourselves to the following expression for this regular factor: 

where only the first non-vanishing real and imaginary power series terms are taken into 
account. 

TheGreenfunction G”’(r1r’) hasasimilarexpression to that of(2.8). Consequently, 
the same transformation can be performed. 

The Green function for the central box GI’(r1r’) is more complicated. Nevertheless, 
its singular part in the long-wave approximation must coincide with equation (3.1) 
(within the accuracy of equation (3.4)), since in the above-mentioned approximation 
the electron wavefunction in the aperture is insensitive to the central-box geometry. 
This can be directly proved by means of the eigenfunction expansion summation for the 
central-box Green function. 

The above-mentioned Green function properties enable us to use the following 
expressions for diagonal kernels: 

KL,L(x‘Ix) = K,(x - x’j[l + (ir/4)k2(x - x ’ ) 7  

- (i/2)[a2/(az az’ ) ]d  ’I ( r  I r’ ) l 1  =O.i. = (3.5) 

- (i/2)[az/(az ~ z ’ ) ] G ’ ’ ( r ~ r ’ ) ~ ~ ~ ~ , ~ , ~ ~ .  (3.6) 

K R . R ( ~ ’ I x )  = KO(x - x ’ ) [ l  + (iz/4)k2(x - x ’ ) * ]  

The function G’‘(r1r‘) is the Green function for the central box with the excluded 
singular part. The exclusion can be performed by means of eigenfunction expansions of 
the Green function and its singular part (3.1). 

Also, the right-hand side of equation (2.14) has to be expanded into the kd-power 
series as well. In our long-wave approximation case it is sufficient to replace this term 
simply by the term k,. 
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Now, before solving equations (2.14) and (2 .19 ,  let us note that the function 

Qa,(x) = -i(kzd/2)v- 

exactly satisfies the integral equation 

(3.7) 

(3.8) 

This enables us to look for the solution of equations (2.14) and (2.15) in the following 
form: 

Qyr) = @LQu(x) (3.9) 

Q R ( X )  = QR@&). (3.10) 

Inserting these expressions in equations (2.14) and (2.15) and performing the inte- 
gration with the accuracy not exceeding (kd)2. we obtain final equations for amplitudes 
QL and 0': 

(1 - iq + KL.L)@L + KL,R@R = 1 

KR.L@L + (1 - ill + KR,R)@R = 0 

(3.11) 

(3.12) 

where 

7 = (.r/S)(kd/2)' (3.13) 

and 

KA.B = (n/4)(d/2)*[J2/(Jz J Z ' ) ] G " ( ~ ~ ~ ' ) ~ , = , , = ~ , ~ - , ~ . ~ . ~ , , .  (3.14) 

Here zAandzB areequal toOand L forthe left-and the right-hand apertures, respectively. 
EstimatingtheGreenfunctionderivativetobe (J/Jz)G = kG,onecansee that equation 
(3.14) includes the small parameter (kd)?. Hence, in calculating the conductance, only 
those Green function parts resonatingclose to electron energy eigenvalues are significant 
enough to be taken into account. As the singular Green function part (3.1) does not 
resonate in the above-mentioned region, in the considered long-wave approximation 
case the function G" is to be replaced by G" in equation (3.14). 

Substituting equation (3.10) for Kirchhoff's integral (2.12) and later for definition 
(2.5) we write the following final expression for the dimensionless conductance: 

g = go I@ IZ (3.15) 

where 

go = 'I2 (3.16) 

is the single-aperture conductance in the long-wave approximation [12]. 
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Figure 2. The layout of thew ring. 

4. ZD ring in magnetic field 

To illustrate the suggested method application now let us consider the conductance of 
the ZD ring, the general layout of which is shown in figure 2. Here ro is the radius of the 
ring and b is its width. Also, we assume there to be a magnetic field with the flux rP, 
penetrating through the ring. To describe this magnetic field the vector potential with 
the axial component 

A, = @ / 2 ~ r  (4.1) 

has to be included into the Hamilton operator (2.3). So, to adjust the suggested Kirch- 
hoff's integral method to the above-mentioned problem with the magnetic field, we 
change the Hamilton operator of the Schrodinger equation (2.1) into 

He = -1[ (I / r ) (a /ar)r (J /ar)  + ( l / r2 ) (a /Jq  + iE)*] (4.2) 

where 

5 = e@/2nhc (4.3) 

is the dimensionless magnetic flux through the ring. Likewise we change the Hamilton 
operator of the Green function equation (2.7) into H $. This replacement changes the 
half-plane Green functions G'(r1r') and G"'(r1r') by the additional phase factor 
exp(ig(qI - p')]. This does not change, however, the main equations (3.11) and (3.12) 
because within the accuracy of the longwave approximation this factor can be replaced 
by unity in the apertures. The definition of the current in the magnetic field has an 
additional term proportional to the vector potential. Fortunately, it has the zero com- 
ponent perpendicular to the integration contour CtI1 and thus the previous expression 
for the conductance (2.5) holds. 

So, what we have to do is to solve the Green function equation (2.7) with the 
Hamilton operator H i  in the central box and to calculate coefficients (3.14) properly. 

Tosimplify the above-mentionedproblem, apart from the long-wave approximation 
kd Q 1, we shall assume the following conditions to be fulfilled: the smallness of the 
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aperture is d Q b and the narrowness of the ring is b Q ro. This allows us to use the 
following approximate Hamilton operator: 

A Matulis and K Patieiiinas 

H g  = --d[az/arz + (i/$,)(a/ap? - iE)*] .  (4.4) 

Now the ring's Green function can be represented as follows: 
o/ 

G"(rIr') = ro 2 R n ( r ) R r t ( r ' ) G n ( q I ~ ' )  (4.5) 
"=l  

where 

R,(r )  = V?@ sin[(m/b)(r - ro + b/2)1 (4.6) 

is the radial eigenfunction and G.(q/q') is the angular Green function. It obeys the 
equation 

[(d/dq - i5)' + ~ ~ ( ~ ) I G n ( v l p ' )  = -S(q - p') (4.7) 

~ , , ( k )  = r o \ m  ( 4 4  

k, = m / b .  (4.9) 

where 

and 

The solution of equation (4.7) is readily obtainable and the angular Green function 
can be represented in the following form: 

G.(pIq') = -[1/4A,z(k)]{exp[ii:(q - q' i ; c ) ] / s i n ( d ~ )  

-exp[ih;(p - q' T n)]/sin(aA;)} (4.10) 

where 

A: = -5 2 i"(k). (4.11) 

The upper sign in the right-hand side exponents of equation (4.10) must be used if 
p > p' and the lower sign when p? < q'. 

Inserting equation (4.10) in (3.14) we obtain the following expressions for the 
coefficients: 

(L 

s in[d ,  (k)] cos[& (k)] KL.L = KR.R = A, (k )  
n-1 sin(,sAL) sin(n2.L) (4.12) 

(4.13) 

where 

A . ( k )  = [nro/4bA.(k)](knd/2)'. (4.14) 

In the long-wave approximation when IA,(k) I Q 1 it is the resonances of equation 
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(4.13) that contribute to  the ring conductance. TO single out these resonances it is 
convenient to write equations (4.12) and (4.13) as 

(4.15) 

(4.16) 

where the ring's eigenvalues are 

k, = v k ;  i (m - E)z/ri = k, i (1/2k,ri)(m - E)2.  (4.!7) 

Substitutingequations(4.15) and (4.16) intoequations (3.11)and(3.12), andsolving 
them in a single-resonance approximation the following expression for the ring con- 
ductance is obtained: 

(4.18) 

as a double sum of the Lorentz-type functions shifted with reference to the ring 
eigenvalues (4.17) by 

(4.19) 6,, = W/2b)(knd/2)[1 - (m - 5)2/2(k,ro)'l 

with the broadening 

ynm = (.~/32)(d/zb)ik,'d/2)~ 

and the oscillator strength 

(4.20) 

f n m  = 1/2?m. (4.21) 

The conductance is seen to consist of the series of spikes corresponding to each radial 
mode. It is interesting to note that these spikes are more shifted with reference to the 
ring eigenvalues (4.17) than broadened: y,,/a., = r j  ic 1. The spike position depends 
on the magnetic flux strength. 

This single-resonance approximation is adequate for considering the individual 
eigenvalue contribution to the ring's conductance. To trace a general view of the 
motion of the spikes and their interaction in the magnetic field a more sophisticated 
approximation should be used. Below we write the exact solution for the first radial 
mode contribution. It is obtained by solving the above-mentioned equations taking into 
account the first terms in sums (4.12) and (4.13). It reads 

I'DR/' = uz sin'[xA,(k)lcos'(~f)/(~[(l - rj2)/u]{sin2[d,(k)] - sin'(xf)} 

- sin[~-cA,(k)]{u sin[nA,(k)] + 2 cos[d,(k)]}IZ 

+ 4~'~(l /u){sinz[~A,(k)]  - sin'(nE)} - 4 sin[Z~A,(k)]]') (4.22) 

where U = A,(k). 

function of Ak io = (k - kJro in the range k, 
conductance has the negligible exponential tail. 

This expression describes the ring conductance when k s kZ and is depicted as 
k s k2 in figure 3. When k =z kl  the 
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Figure3.Thefirstradial modecontribution to the 
ring conductance as a function of Akr,=  
(k - k l ) r o  for blro = 0.3 and d/b = 0.8: curve A, 
5 - RcurveB, 5 = 0.1. 

Figure 4. Splitting of the third spike in the mag 
netic field (b/ro = 0.3 d/b = 0.8): curves A, g = 
0; curve 6, = 0.1; curve C. 5 = 0.25; curve D. 
E = 0.4; curve E, = 0.45. 

5. Discussion of results 

The results presented in figure 3 show a well known fact that every series of the ring 
resonances yields the corresponding series of spikes in the ring conductivity (in figure 3, 
only one series corresponding to the first radial mode is shown). With the magnetic flux 
through the ring absent ( 5  = 0, curve A), each eigenvalue (4.17) is doubly degenerate, 
which correspondsto twoequivalent electron motions in the ring: clockwiseand counter- 
clockwise (em). When the magnetic field is switched on, these electron motions are no 
longer equivalent and the degeneracy o€ the eigenvalues disappears. So, there appear 
two series of spikes which move with respect to one another as the magnetic field 
increases (curve B). This situation is shown in figure 4 in some detail where the third 
spike is depicted. As seen from equation (4.22) the conductance is a periodic function 
of the magnetic flux magnitude 5 ,  which is characteristic of Aharonov-Bohm-type 
phenomena in conducting rings. 

It is worthwhile to note two interesting facts related to the magnetic field influence. 
The first is that the ring conductance vanishes at certain values of the magnetic flux 5 = 
I + &, I = 0, 1, , . . because of the presence of the factor CO@) in the numerator of 
equation (4.13). The second is that, when the magnetic field is switched on, the ring 
conductance vanishes at k = k,, owing to the presence of another factor sin[xL,(k)] in 
the same equation (4.13). Thus, as seen from figures 3 and 4, the spike's wing rather 
than the top is split, which is a direct consequence of the above-mentioned fact that the 
spikes are more shifted with reference to the ring eigenvalues than broadened. The 
splitting is very deep and thus for every magnetic flux magnitude one can achieve zero 
conductivity for a certain value of the Fermi momentum k,, which exactly coincides 
with ring eigenvalues. 

It should benotedthat themagnticfluxdependenceof the ringconductance resonant 
structure is similar to that obtained in 1131 where the Aharonov-Bohm phenomena in a 
one-dimensional metal ring were studied. They treated the ring connections to current 
leadsphenomenologically, and in the weak-coupling limit, contrary toour results, found 
that the conductance spikes were more broadened than shifted. 

Concluding, we would like to point out that by means of the suggested Kirchhoffs 
integral method a relatively simple analytical description of resonant features in a 
ballistic transport can be obtained. We expect this method to be of value for more 
complicated problems, say those which take elastic electron scattering into account. 
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